Special Coverage

Home

Coming Soon - Bridging the Gap: Flight-Based Evaluations Soar to New Heights with Advanced Manufacturing

Additive manufacturing, also known as 3D printing, is being heralded as a disruptive technology in aerospace, and for good reason – it’s literally changing the way aircrafts are being manufactured. Just ask Area-I, an aerospace engineering company, which has been partnering with Stratasys Direct Manufacturing, an advanced manufacturing services organization, to create PTERA, an unmanned Prototype Technology Evaluation and Research Aircraft that helps fill a technology gap between wind tunnel and manned flight testing. On this Webinar, engineers from both teams will talk about how additive manufacturing helped PTERA get off the ground – literally.

Posted in: Upcoming Webinars

Read More >>

Engineers Develop 2D Liquid

Soft nanoparticles from a University of Pennsylvania research team stick to the plane where oil and water meet, but do not stick to one another. The interface presents a potentially useful set of properties. The nanoparticles freely move past one another while being confined to the interface, effectively acting as a 2D liquid. Gold nanoparticles were decorated with surfactant, or soap-like, ligands. The ligands have a water-loving head and an oil-loving tail, and the way they are attached to the central particle allows them to contort themselves.The arrangement produces a “flying saucer” shape, with the ligands stretching out more at the interface than above or below. The ligand bumpers keep the particles from clumping together.  The researchers also devised ways of measuring the system's properties. Their data will better inform computer simulations and potentially lead to applications in fields like nanomanufacturing and catalysis. SourceAlso: Learn about a Nanoparticle/Polymer Nanocomposite Bond Coating.

Posted in: News

Read More >>

Prototype Camera Powers Itself

A new prototype video is fully self-powered and can produce an image each second, indefinitely, of a well-lit indoor scene. Columbia University researchers designed a pixel that can not only measure incident light but also convert the incident light into electric power.The simple pixel design uses two transistors. During each image capture cycle, the pixels first record and read out the image, and then harvest energy and charge the sensor’s power supply; the image sensor continuously toggles between image capture and power harvesting modes. When the camera is not used to capture images, it can generate power for other devices, such as a phone or a watch.SourceAlso: Learn about Detection of Dropped Objects in Video.

Posted in: News

Read More >>

External Power Supply Efficiency Regulation Introduction

Presently Energy Efficiency Level V is mandatory in Canada and throughout Europe. In February 2016 Energy Efficiency Level VI will become mandatory in the United States. Attached are the details of the pending change, but in brief, both the standby power draw and efficiency of the operating power supplies must meet minimum levels set in the standard. MEGA is in the process of updating our product line to comply with the coming changes.

Posted in: White Papers, Electronics

Read More >>

Designing a Phased Array Antenna Using Antenna Magus and CST STUDIO SUITE

Antenna synthesis lets engineers investigate many potential designs and produce antennas that fit the specifications quickly. For effects that cannot be accounted for analytically such as edge effects and mutual coupling, full-wave 3D simulation can complement synthesis tools and allow designs to be checked and fine-tuned. This article explores the synthesis of an antenna array, using a phased array satellite communications antenna as an example.

Posted in: White Papers, White Papers

Read More >>

Special Delivery: NASA Marshall Receives 3D-Printed Tools from Space

Engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, unboxed some special cargo from the International Space Station on April 6: the first items manufactured in space with a 3D printer.The items were manufactured as part of the 3D Printing in Zero-G Technology Demonstration on the space station to show that additive manufacturing can make a variety of parts and tools in space. The early in-space 3D printing demonstrations are the first steps toward realizing an additive manufacturing, print-on-demand “machine shop” for long-duration missions and sustaining human exploration of other planets, where there is extremely limited ability and availability of Earth-based resupply and logistics support. In-space manufacturing technologies like 3D printing will help NASA explore Mars, asteroids, and other locations.NASA astronaut Barry “Butch” Wilmore installed the printer in the station’s Microgravity Science Glovebox in November 2014. Before the end of the year, the crew manufactured 21 items including a ratchet wrench, the first tool built in space. To make the items, the printer heated a relatively low-temperature plastic filament to build parts, layer on top of layer, in designs supplied to the machine. The printer remains on aboard the station for continued use later this year. The printer used 14 different designs and built a total of 21 items and some calibration coupons. The parts returned to Earth in February on the SpaceX Dragon. They were then delivered to Marshall where the testing to compare the ground controls to the flight parts will be conducted. SourceAlso: Learn about the Design and Fabrication of a Radio Frequency Grin Lens Using 3D Printing.

Posted in: News

Read More >>

Inkjet Technology Prints 'Soft Robot' Circuits

A new potential manufacturing approach from Purdue University researchers harnesses inkjet printing to create devices made of liquid alloys. The resulting stretchable electronics are compatible with soft machines, such as robots that must squeeze through small spaces, or wearable electronics. The conductors made from liquid metal can stretch and deform without breaking. The Purdue team's process allows users to print the flexible conductors onto elastic materials and fabrics.To make the printable ink, ultrasound technology disperses the liquid metal in a non-metallic solvent. The process breaks up the bulk liquid metal into nanoparticles, which are compatible with inkjet printing. After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices. The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultra-thin traces and new types of sensors.Source Also: Learn about Inkjet-Assisted Creation of Self-Healing Layers.

Posted in: News

Read More >>